Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations.
نویسندگان
چکیده
We investigated the cellular mechanisms that led to growth inhibition, morphological changes, and lysis of Bacillus cereus WSBC 10030 when it was challenged with a long-chain polyphosphate (polyP). At a concentration of 0.1% or higher, polyP had a bacteriocidal effect on log-phase cells, in which it induced rapid lysis and reductions in viable cell counts of up to 3 log units. The cellular debris consisted of empty cell wall cylinders and polar caps, suggesting that polyP-induced lysis was spatially specific. This activity was strictly dependent on active growth and cell division, since polyP failed to induce lysis in cells treated with chloramphenicol and in stationary-phase cells, which were, however, bacteriostatically inhibited by polyP. Similar observations were made with B. cereus spores; 0.1% polyP inhibited spore germination and outgrowth, and a higher concentration (1.0%) was even sporocidal. Supplemental divalent metal ions (Mg(2+) and Ca(2+)) could almost completely block and reverse the antimicrobial activity of polyP; i. e., they could immediately stop lysis and reinitiate rapid cell division and multiplication. Interestingly, a sublethal polyP concentration (0.05%) led to the formation of elongated cells (average length, 70 microm) after 4 h of incubation. While DNA replication and chromosome segregation were undisturbed, electron microscopy revealed a complete lack of septum formation within the filaments. Exposure to divalent cations resulted in instantaneous formation and growth of ring-shaped edges of invaginating septal walls. After approximately 30 min, septation was complete, and cell division resumed. We frequently observed a minicell-like phenotype and other septation defects, which were probably due to hyperdivision activity after cation supplementation. We propose that polyP may have an effect on the ubiquitous bacterial cell division protein FtsZ, whose GTPase activity is known to be strictly dependent on divalent metal ions. It is tempting to speculate that polyP, because of its metal ion-chelating nature, indirectly blocks the dynamic formation (polymerization) of the Z ring, which would explain the aseptate phenotype.
منابع مشابه
A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-dependent gene expression.
The citB gene of Bacillus subtilis encodes aconitase, the enzyme of the Krebs citric acid cycle, which is responsible for the interconversion of citrate and isocitrate. A B. subtilis strain with an insertion mutation in the citB gene was devoid of aconitase activity and aconitase protein, required glutamate for growth in minimal medium, and was unable to sporulate efficiently in nutrient broth ...
متن کاملCoupled transport of citrate and magnesium in Bacillus subtilis.
Citrate transport in Bacillus subtilis is dependent on the presence of Mgz+. Other divalent cations like MnZ+, Co2+, or Ni2+ can replace magnesium ions. 2*Mg2+ or j4Mn2+ are taken up by the cells simultaneously with the uptake of citrate. Cells which are not induced for citrate transport do not show the citrate-dependent uptake of either 64Mn2+ or 2sMg2+. Citrate transport and the citrate-depen...
متن کاملSeptal localization of penicillin-binding protein 1 in Bacillus subtilis.
Previous studies have shown that Bacillus subtilis cells lacking penicillin-binding protein 1 (PBP1), encoded by ponA, have a reduced growth rate in a variety of growth media and are longer, thinner, and more bent than wild-type cells. It was also recently shown that cells lacking PBP1 require increased levels of divalent cations for growth and are either unable to grow or grow as filaments in ...
متن کاملBacillus subtilis cells lacking penicillin-binding protein 1 require increased levels of divalent cations for growth.
Bacillus subtilis strains lacking penicillin-binding protein 1 (PBP1), encoded by ponA, required greater amounts of Mg2+ or Ca2+ for vegetative growth or spore outgrowth than the wild-type strain and strains lacking other high-molecular-weight (HMW) PBPs. Growth of ponA cells in a medium low in Mg2+ also resulted in greatly increased cell bending compared to wild-type cells or cells lacking oth...
متن کاملInorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation.
Chains of inorganic polyphosphate (poly-P) with hundreds of P(i) residues linked by phosphoanhydride bonds, as in ATP, are found in every bacterial, fungal, plant, and animal cell, in which they perform various functions. In the spore-forming Bacillus cereus, we have identified three principal enzymes and genes involved in the metabolism of poly-P, namely, (i) poly-P kinase (PPK), which synthes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 65 9 شماره
صفحات -
تاریخ انتشار 1999